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JavaScript needs static analysis

• Testing is still the main technique programmers 
have for finding errors in their code

• Static analysis can (in principle) be used for

– bug detection (e.g. "x.p in line 7 always yields undefined")

– security vulnerability detection

– code completion and navigation in IDEs

– optimization
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JavaScript is a dynamic language

• Object-based, properties created on demand

• Prototype-based inheritance

• First-class functions, closures

• Runtime types, coercions

• ···
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NO STATIC TYPE CHECKING 
NO STATIC CLASS HIERARCHIES



Type Analysis for JavaScript

Goals:

• Catch type-related errors using
static analysis

• Support the full language

• Aim for soundness
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TAJS in Eclipse



Related static analysis tools
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Type-related errors in JavaScript
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var x = 

["Static","Analysis","Symposium"];

for (var i = 0; i < x.lenght; i++) {

console.log(x[i]);

}



Likely programming errors

1. invoking a non-function value (e.g. undefined) as a function

2. reading an absent variable

3. accessing a property of null or undefined

4. reading an absent property of an object

5. writing to variables or object properties that are never read

6. calling a function object both as a function and as a 
constructor, or passing function parameters with varying types

7. calling a built-in function with an invalid number of 
parameters, or with a parameter of an unexpected type

etc.
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See also The Good, the Bad, and the Ugly: An Empirical Study of 
Implicit Type Conversions in JavaScript, Pradel & Sen, ECOOP 2015



Research methodology
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identify interesting problem

design initial analysis

implement, 
evaluate experimentally

identify 
bottleneck

refine 
analysis 
design

works perfectly?

too imprecise? too slow?



Which way to go?
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The TAJS approach

• Dataflow analysis / abstract interpretation
using monotone frameworks
[Kam & Ullman ’77]

• The recipe:
1. construct a control flow graph for each function 

in the program to be analyzed

2. define an appropriate dataflow lattice
(abstraction of data)

3. define transfer functions
(abstraction of operations)
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[Jensen, Møller, and Thiemann, SAS’09]
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Control flow graphs

• Convenient intermediate 
representation of 
JavaScript programs

• Nodes describe
primitive instructions

• Edges describe 
intra-procedural
control-flow

• Relatively high-level IR
(unlike e.g. λJS)



The dataflow lattice (simplified!)
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• For each program point N and call context C, 
the analysis maintains an abstract state:

N ⨯ C → State

• Each abstract state provides an abstract value 
for each abstract object L and property name P:

State = L ⨯ P → Value

• Each abstract value describes pointers and 
primitive values:

Value = 𝒫(L) ⨯ Bool ⨯ Str ⨯ Num ...

• Details refined through trial-and-error...



Transfer functions, example

A dynamic property read:   x[y]
1. Coerce x to objects

2. Coerce y to strings 

3. Descend the object prototype chains 
to find the relevant properties

4. Join the property values
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function Person(n) {

this.setName(n);

Person.prototype.count++;

}

Person.prototype.count = 0;

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

this.b(n);

delete this.b;

this.studentid = s.toString();

}

Student.prototype = new Person;

var t = 100026;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

y.setName("John Q. Doe");

declares a “class” 
named Person
declares a “static field” 
named count

declares a shared method
named setName

declares a “sub-class” 
named Student

creates two Student
objects…

does y have a setName method at this program point?

A tiny example...



An abstract state 
(as produced by TAJS)
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JavaScript web applications

• Modeling JavaScript code is not enough…

• The environment of the JavaScript code:

–the ECMAScript standard library

–the browser API

–the HTML DOM

–the event mechanism
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around 250 abstract objects
with 500 properties 
and 200 functions…

[Jensen, Madsen, and Møller, ESEC/FSE’11]



Some experiments

Some ways to measure analysis precision: 

• most call sites and property reads are safe

• most call sites are monomorphic

• most expressions have a unique type

• most spelling errors cause type-related errors

General observation: higher precision ⇒ faster analysis

19

Good results on analyzing small web applications from
Chrome Experiments, IE 9 Test Drive, and 10K Challenge



The eval of JavaScript

• eval(S)
– parse the string S as JavaScript code, then execute it

• Challenging for static analysis

– the string is dynamically generated

– the generated code may have side-effects

– and JavaScript has poor encapsulation mechanisms
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Eval in practice
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function _var_exists(name) {
try {
eval(’var foo = ’ + name + ’;’);

} catch (e) {
return false;

}
return true;

}

var Namespace = {
create: function(path) {

var container = null;
while (path.match(/^(\w+)\.?/)) {

var key = RegExp.$1;
path = path.replace(/^(\w+)\.?/, "");
if (!container) {

if (!_var_exists(key))
eval(’window.’ + key + ’ = {};’);

eval(’container = ’ + key + ’;’);
} else {

if (!container[key]) container[key] = {};
container = container[key];

}
}

}
};

http://www.chromeexperiments.com/detail/canvas-cycle/

window[key] = {};

return name in window;

(also avoids conflicts if name is "name" or "foo")



Eval is evil

• ... but most uses of eval are not very complex

• So let’s transform eval calls into other code!

• How can we soundly make such transformations 
if we cannot analyze code with eval?

22

Which came first?

Analysis or transformation
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Whenever TAJS detects new dataflow to eval,
the eval transformer is triggered

[Jensen, Jonsson, and Møller, ISSTA’12]



A simple example
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The dataflow analysis propagates dataflow 
until the fixpoint is reached

– iteration 1:   y is "foo",  i is 0
eval(y + "(" + i + ")")   foo(0)

(the dataflow analysis can now proceed into foo)

– iteration 2:   y is "foo",  i is AnyNumber
eval(y + "(" + i + ")")  foo(i)

– …

var y = "foo"
for (i = 0; i < 10; i++) {
eval(y + "(" + i + ")")

}

(would not work if i could be any string)



eval("ca[i].match(/\\b" + name + "=/)")


name==="clicky_olark" ? ca[i].match(/\\bclicky_olark=/)
: name==="no_tracky" ? ca[i].match(/\\bno_tracky=/)

: ca[i].match(/\\b_jsuid=/)
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get_cookie = function (name) {
var ca = document.cookie.split(’;’);
for (var i = 0, l = ca.length; i < l; i++) {

if (eval("ca[i].match(/\\b" + name + "=/)"))
return decodeURIComponent(ca[i].split(’=’)[1]);

}
return ’’;

}
get_cookie(’clicky_olark’)
get_cookie(’no_tracky’)
get_cookie(’_jsuid’)

A real-world example



Ingredients in a static analyzer 
for JavaScript applications

We need to model

the language semantics

the standard library (incl. eval)

the browser API (the HTML DOM, the event system, etc.)
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







Mission complete?

27



Mission complete?
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Why use jQuery (or other libraries)?
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 Patches browser incompatibilities

 CSS3-based DOM navigation

 Event handling

 AJAX (client-server communication)

 UI widgets and animations

 1000s of plugins available



An appetizer
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var checkedValue;

var elements = document.getElementsByTagName('input');

for (var n = 0; n < elements.length; n++) {

if (elements[n].name == 'someRadioGroup' &&

elements[n].checked) {

checkedValue = elements[n].value;

}

}

Which code fragment do you prefer?

var checkedValue = $('[name="someRadioGroup"]:checked').val();



Investigating the beast
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lines executed 
when the library 
initializes itself 
after loading



[Schäfer, Sridharan, Dolby, Tip. Dynamic Determinacy Analysis, PLDI'13]

Experimental results for jQuery with WALA:

– can analyze a JavaScript program 
that loads jQuery and does nothing else

– no success on jQuery 1.3 and beyond 

The WALA approach:

1) dynamic analysis to infer determinate expressions 
that always have the same value in any execution 
(but for a specific calling context)

2) exploit this information in context-sensitive pointer analysis 
33



A dynamic property read:   x[y]
– if x may evaluate to the global object

– and y may evaluate to a unknown string

– then x[y] may yield 
eval, document, Array, Math, ...
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Example of 
imprecision that explodes

consequence



jQuery: sweet on the outside, 
bitter on the inside

A representative example from the library initialization code:

which could have been written like this:
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jQuery.each("ajaxStart ajaxStop ... ajaxSend".split(" "),

function(i, o) {

jQuery.fn[o] = function(f) {

return this.on(o, f);

};

});

jQuery.fn.ajaxStart = function(f) { return this.on("ajaxStart", f); };

jQuery.fn.ajaxStop = function(f) { return this.on("ajaxStop", f); };

...

jQuery.fn.ajaxSend = function(f) { return this.on("ajaxSend", f); };
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each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

... // (some lines omitted to make the example fit on one slide)

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

Lots of
• overloading
• reflection
• callbacks



Our recent results, by improving TAJS

• TAJS can now analyze (in reasonable time)

– the load-only program for 11 of 12 versions of jQuery

– 27 of 71 small examples from a jQuery tutorial

• Very good precision for type analysis and call graphs 

• Analysis time: 1-24 seconds (average: 6.5 seconds)

• Perhaps not impressive, but progress 

37[Andreasen and Møller, OOPSLA’14]



TAJS analysis design

• Whole-program, flow-sensitive dataflow analysis

• Constant propagation

• Heap modeling using allocation site abstraction

• Object sensitivity (a kind of context sensitivity)

• Branch pruning (eliminate dataflow along infeasible branches)

• Parameter sensitivity

• Loop specialization

• Context-sensitive heap abstraction

38[Andreasen and Møller, OOPSLA’14]



each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

...

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

with parameter 
sensitivity, these
become constants

branch pruning logically
eliminates several branches

constant  propagation...

specializing on i effectively
unrolls the loop

context-sensitive heap abstraction keeps the 
ajaxStart, ajaxStop, etc. functions separate 
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Observations

• The analysis is essentially executing 
the critical library code concretely!
– but allowing abstract values, e.g. from the application code

• A kind of “static determinacy analysis”

Experiments show that

• all the tricks must be enabled to get positive results

• unhandled cases are likely not due to too much precision
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Conclusion
• JavaScript programmers need better tools!

• Static program analysis can detect type-related errors,
find dead code, build call graphs, etc.

– dataflow analysis to model the ECMAScript standard 

– model of the standard library, browser API, and HTML DOM

– rewrite calls to eval during analysis

– handle complex libraries by boosting analysis precision

• Progress, but far from a full solution… 

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://casa.au.dk/
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http://casa.au.dk/

