
Static Analysis for JavaScript
– Challenges and Techniques

Anders Møller
Center for Advanced Software Analysis

Aarhus University

SAS 2015 – Saint-Malo

JavaScript

2

JavaScript needs static analysis

• Testing is still the main technique programmers
have for finding errors in their code

• Static analysis can (in principle) be used for

– bug detection (e.g. "x.p in line 7 always yields undefined")

– security vulnerability detection

– code completion and navigation in IDEs

– optimization

3

JavaScript is a dynamic language

• Object-based, properties created on demand

• Prototype-based inheritance

• First-class functions, closures

• Runtime types, coercions

• ···

4

NO STATIC TYPE CHECKING
NO STATIC CLASS HIERARCHIES

Type Analysis for JavaScript

Goals:

• Catch type-related errors using
static analysis

• Support the full language

• Aim for soundness

5

6

TAJS in Eclipse

Related static analysis tools

7

Type-related errors in JavaScript

8

var x =

["Static","Analysis","Symposium"];

for (var i = 0; i < x.lenght; i++) {

console.log(x[i]);

}

Likely programming errors

1. invoking a non-function value (e.g. undefined) as a function

2. reading an absent variable

3. accessing a property of null or undefined

4. reading an absent property of an object

5. writing to variables or object properties that are never read

6. calling a function object both as a function and as a
constructor, or passing function parameters with varying types

7. calling a built-in function with an invalid number of
parameters, or with a parameter of an unexpected type

etc.

9

See also The Good, the Bad, and the Ugly: An Empirical Study of
Implicit Type Conversions in JavaScript, Pradel & Sen, ECOOP 2015

Research methodology

10

identify interesting problem

design initial analysis

implement,
evaluate experimentally

identify
bottleneck

refine
analysis
design

works perfectly?

too imprecise? too slow?

Which way to go?

11

The TAJS approach

• Dataflow analysis / abstract interpretation
using monotone frameworks
[Kam & Ullman ’77]

• The recipe:
1. construct a control flow graph for each function

in the program to be analyzed

2. define an appropriate dataflow lattice
(abstraction of data)

3. define transfer functions
(abstraction of operations)

12

[Jensen, Møller, and Thiemann, SAS’09]

13

Control flow graphs

• Convenient intermediate
representation of
JavaScript programs

• Nodes describe
primitive instructions

• Edges describe
intra-procedural
control-flow

• Relatively high-level IR
(unlike e.g. λJS)

The dataflow lattice (simplified!)

14

• For each program point N and call context C,
the analysis maintains an abstract state:

N ⨯ C → State

• Each abstract state provides an abstract value
for each abstract object L and property name P:

State = L ⨯ P → Value

• Each abstract value describes pointers and
primitive values:

Value = 𝒫(L) ⨯ Bool ⨯ Str ⨯ Num ...

• Details refined through trial-and-error...

Transfer functions, example

A dynamic property read: x[y]
1. Coerce x to objects

2. Coerce y to strings

3. Descend the object prototype chains
to find the relevant properties

4. Join the property values

15

16

function Person(n) {

this.setName(n);

Person.prototype.count++;

}

Person.prototype.count = 0;

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

this.b(n);

delete this.b;

this.studentid = s.toString();

}

Student.prototype = new Person;

var t = 100026;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

y.setName("John Q. Doe");

declares a “class”
named Person
declares a “static field”
named count

declares a shared method
named setName

declares a “sub-class”
named Student

creates two Student
objects…

does y have a setName method at this program point?

A tiny example...

An abstract state
(as produced by TAJS)

17

JavaScript web applications

• Modeling JavaScript code is not enough…

• The environment of the JavaScript code:

–the ECMAScript standard library

–the browser API

–the HTML DOM

–the event mechanism

18

around 250 abstract objects
with 500 properties
and 200 functions…

[Jensen, Madsen, and Møller, ESEC/FSE’11]

Some experiments

Some ways to measure analysis precision:

• most call sites and property reads are safe

• most call sites are monomorphic

• most expressions have a unique type

• most spelling errors cause type-related errors

General observation: higher precision ⇒ faster analysis

19

Good results on analyzing small web applications from
Chrome Experiments, IE 9 Test Drive, and 10K Challenge

The eval of JavaScript

• eval(S)
– parse the string S as JavaScript code, then execute it

• Challenging for static analysis

– the string is dynamically generated

– the generated code may have side-effects

– and JavaScript has poor encapsulation mechanisms

20

Eval in practice

21

function _var_exists(name) {
try {
eval(’var foo = ’ + name + ’;’);

} catch (e) {
return false;

}
return true;

}

var Namespace = {
create: function(path) {

var container = null;
while (path.match(/^(\w+)\.?/)) {

var key = RegExp.$1;
path = path.replace(/^(\w+)\.?/, "");
if (!container) {

if (!_var_exists(key))
eval(’window.’ + key + ’ = {};’);

eval(’container = ’ + key + ’;’);
} else {

if (!container[key]) container[key] = {};
container = container[key];

}
}

}
};

http://www.chromeexperiments.com/detail/canvas-cycle/

window[key] = {};

return name in window;

(also avoids conflicts if name is "name" or "foo")

Eval is evil

• ... but most uses of eval are not very complex

• So let’s transform eval calls into other code!

• How can we soundly make such transformations
if we cannot analyze code with eval?

22

Which came first?

Analysis or transformation

23

Whenever TAJS detects new dataflow to eval,
the eval transformer is triggered

[Jensen, Jonsson, and Møller, ISSTA’12]

A simple example

24

The dataflow analysis propagates dataflow
until the fixpoint is reached

– iteration 1: y is "foo", i is 0
eval(y + "(" + i + ")")  foo(0)

(the dataflow analysis can now proceed into foo)

– iteration 2: y is "foo", i is AnyNumber
eval(y + "(" + i + ")")  foo(i)

– …

var y = "foo"
for (i = 0; i < 10; i++) {
eval(y + "(" + i + ")")

}

(would not work if i could be any string)

eval("ca[i].match(/\\b" + name + "=/)")


name==="clicky_olark" ? ca[i].match(/\\bclicky_olark=/)
: name==="no_tracky" ? ca[i].match(/\\bno_tracky=/)

: ca[i].match(/\\b_jsuid=/)

25

get_cookie = function (name) {
var ca = document.cookie.split(’;’);
for (var i = 0, l = ca.length; i < l; i++) {

if (eval("ca[i].match(/\\b" + name + "=/)"))
return decodeURIComponent(ca[i].split(’=’)[1]);

}
return ’’;

}
get_cookie(’clicky_olark’)
get_cookie(’no_tracky’)
get_cookie(’_jsuid’)

A real-world example

Ingredients in a static analyzer
for JavaScript applications

We need to model

the language semantics

the standard library (incl. eval)

the browser API (the HTML DOM, the event system, etc.)

26







Mission complete?

27

Mission complete?

28

29

Why use jQuery (or other libraries)?

30

 Patches browser incompatibilities

 CSS3-based DOM navigation

 Event handling

 AJAX (client-server communication)

 UI widgets and animations

 1000s of plugins available

An appetizer

31

var checkedValue;

var elements = document.getElementsByTagName('input');

for (var n = 0; n < elements.length; n++) {

if (elements[n].name == 'someRadioGroup' &&

elements[n].checked) {

checkedValue = elements[n].value;

}

}

Which code fragment do you prefer?

var checkedValue = $('[name="someRadioGroup"]:checked').val();

Investigating the beast

32

lines executed
when the library
initializes itself
after loading

[Schäfer, Sridharan, Dolby, Tip. Dynamic Determinacy Analysis, PLDI'13]

Experimental results for jQuery with WALA:

– can analyze a JavaScript program
that loads jQuery and does nothing else

– no success on jQuery 1.3 and beyond 

The WALA approach:

1) dynamic analysis to infer determinate expressions
that always have the same value in any execution
(but for a specific calling context)

2) exploit this information in context-sensitive pointer analysis
33

A dynamic property read: x[y]
– if x may evaluate to the global object

– and y may evaluate to a unknown string

– then x[y] may yield
eval, document, Array, Math, ...

34

Example of
imprecision that explodes

consequence

jQuery: sweet on the outside,
bitter on the inside

A representative example from the library initialization code:

which could have been written like this:

35

jQuery.each("ajaxStart ajaxStop ... ajaxSend".split(" "),

function(i, o) {

jQuery.fn[o] = function(f) {

return this.on(o, f);

};

});

jQuery.fn.ajaxStart = function(f) { return this.on("ajaxStart", f); };

jQuery.fn.ajaxStop = function(f) { return this.on("ajaxStop", f); };

...

jQuery.fn.ajaxSend = function(f) { return this.on("ajaxSend", f); };

36

each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

... // (some lines omitted to make the example fit on one slide)

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

Lots of
• overloading
• reflection
• callbacks

Our recent results, by improving TAJS

• TAJS can now analyze (in reasonable time)

– the load-only program for 11 of 12 versions of jQuery

– 27 of 71 small examples from a jQuery tutorial

• Very good precision for type analysis and call graphs

• Analysis time: 1-24 seconds (average: 6.5 seconds)

• Perhaps not impressive, but progress 

37[Andreasen and Møller, OOPSLA’14]

TAJS analysis design

• Whole-program, flow-sensitive dataflow analysis

• Constant propagation

• Heap modeling using allocation site abstraction

• Object sensitivity (a kind of context sensitivity)

• Branch pruning (eliminate dataflow along infeasible branches)

• Parameter sensitivity

• Loop specialization

• Context-sensitive heap abstraction

38[Andreasen and Møller, OOPSLA’14]

each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

...

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

with parameter
sensitivity, these
become constants

branch pruning logically
eliminates several branches

constant propagation...

specializing on i effectively
unrolls the loop

context-sensitive heap abstraction keeps the
ajaxStart, ajaxStop, etc. functions separate

39

Observations

• The analysis is essentially executing
the critical library code concretely!
– but allowing abstract values, e.g. from the application code

• A kind of “static determinacy analysis”

Experiments show that

• all the tricks must be enabled to get positive results

• unhandled cases are likely not due to too much precision

40

Conclusion
• JavaScript programmers need better tools!

• Static program analysis can detect type-related errors,
find dead code, build call graphs, etc.

– dataflow analysis to model the ECMAScript standard

– model of the standard library, browser API, and HTML DOM

– rewrite calls to eval during analysis

– handle complex libraries by boosting analysis precision

• Progress, but far from a full solution…

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://casa.au.dk/
41

http://casa.au.dk/

