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Introduction

Introduction

Goal: static analysis of concurrent programs

Discover properties of the dynamic behaviors of programs:
directly on the source code (not a model)

in an automated way (not interactive)

in a terminating and efficient way
with approximations (computability and efficiency)

soundly (full coverage of all behaviors)

with customizable precision control (global and local control)

We use the theory of abstract interpretation [Cousot and Cousot]

We developed the AstréeA static analyzer
(an extension of the Astrée analyzer to concurrent embedded software)
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Introduction

Certification in the avionics industry

Critical avionics software are subject to certification:
more than half the development cost
regulated by international standards (DO-178B, DO-178C)

mostly based on massive test campaigns & intellectual reviews

Current trend:
use of formal methods now acknowledged (DO-178C, DO-333)

at the binary level, to replace testing
at the source level, to replace intellectual reviews,
and testing when using a certified compiler (CompCert)

to check robustness, RTE-freedom, WCET, etc.
static analysis can be used provided it is sound

=⇒ sound automatic static analysis improves cost-effectiveness!
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Introduction

Astrée
Astrée: Analyse Statique Temps-RÉEel

Features:
checks statically for the absence of run-time errors (RTE)
supports a large subset of C (targeting embedded software)

specialized for synchronous reactive codes (e.g., avionics)

fast, sound and precise (aims at 0 alarm)
limited to sequential software (no concurrency)

Time-line:
2001 Astrée project starts
2003 0 alarm on A340 primary control software
2005 0 alarm on A380 primary control software
2009 industrialization by AbsInt

Development team: ÉNS, Paris, France
B. Blanchet, P. Cousot, R. Cousot, L. Mauborgne,
D. Monniaux, J. Feret, A. Miné, X. Rival
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Introduction

Concurrent software
Concurrent programming:
decompose a program into a set of loosely interacting processes

exploit parallelism in computers (multi-cores, distributed computing)

logical decomposition into asynchronous tasks
(servers, GUI, reactive programs)

Use in avionics software: Integrated Modular Avionics
integrate functionnalities (less CPUs)
replace buses with shared memory communications
limited to less critical software (DAL C–E, less stringent certification)

static resource allocation (threads, locks, memory)

Issues:
concurrent software are more difficult to design correctly
and more difficult to validate and verify
test is ineffective, formal methods are nonexistent
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Introduction

AstréeA = Astrée + A

AstréeA: Analyse statique de programmes temps-réels asynchrones

static analyzer for concurrent embedded C codes

checks for run-time errors and data-races
fork of the Astrée analyzer (around 2007)

reuses Astrée’s iterator and abstract domains
builds on them a thread-modular analysis
adds new abstract domains

as Astrée, aims towards high precision by specialization

unlike Astrée, still many false alarms on target code
but already usable (industrialization in progress)
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Introduction

Talk overview

From sequential to concurrent abstract interpreters
specialized analyzers
iterated sequential analysis with simple interference

Abstract rely-guarantee
a complete concrete semantics
retrieving simple interferences by abstraction
novel abstractions of interferences

Experiments
academic experiments
industrial experiments

Conclusion and future challenges
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Abstract interpreters

Abstract interpreters
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Abstract interpreters Classic and specialized interpreters

Classic and specialized interpreters
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Abstract interpreters Classic and specialized interpreters

“Classic” abstract interpreter design

1 State the concrete semantics

2 State the class of properties of interest

3 Fix the class of properties that actually need to be inferred

4 Design an analyzer over a computable abstract semantics
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Abstract interpreters Classic and specialized interpreters

“Classic” abstract interpreter design

1 State the concrete semantics
function from programs to a (rich) mathematical world
formalization of the language specification
ground truth, immutable
not computable!

2 State the class of properties of interest

3 Fix the class of properties that actually need to be inferred

4 Design an analyzer over a computable abstract semantics
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Abstract interpreters Classic and specialized interpreters

“Classic” abstract interpreter design

1 State the concrete semantics

2 State the class of properties of interest
e.g.: variable bounds X ∈ [a, b]

3 Fix the class of properties that actually need to be inferred

4 Design an analyzer over a computable abstract semantics
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Abstract interpreters Classic and specialized interpreters

“Classic” abstract interpreter design

1 State the concrete semantics

2 State the class of properties of interest

3 Fix the class of properties that actually need to be inferred
e.g.: linear constraints αX + βY ≤ γ
generally richer than the properties of interest
need to represent intermittent assertions, inductive loop invariants
may depend on the class of analyzed programs

4 Design an analyzer over a computable abstract semantics
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Abstract interpreters Classic and specialized interpreters

“Classic” abstract interpreter design

1 State the concrete semantics

2 State the class of properties of interest

3 Fix the class of properties that actually need to be inferred

4 Design an analyzer over a computable abstract semantics
derive or invent abstract operators (e.g., interval arithmetic)
invent acceleration operators O
abstract domain: data-structures and algorithms
abstract composition and O accumulate precision loss
=⇒ we will not find the most precise property in the class
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Abstract interpreters Classic and specialized interpreters

Specialized abstract interpreter
Refine the abstraction

1 Start with a simple and fast analyzer (intervals)
and a representative program in a class of programs of interest

2 Refine by hand the analyzer until 0 false alarm
determine which intermittent properties are missed
add a new domain (if the property is not expressible)
employ fast transfer functions, if possible
limit the activation scope (variables, program part) to keep scalability
connect to existing domains through partial reductions

refine transfer functions
add communications (reductions)

adjust precision parameters
activation scope, iteration parameters, . . .
(available to end-users)
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Abstract interpreters Classic and specialized interpreters

Specialized abstract interpreter
Refine the abstraction

Result
sound by construction
efficient by parsimony
0 false alarm on the target program by refinement
encourages modular design, reusable abstractions

Rationale:
For each program and property, an adequate domain exists
but its construction is generally not mechanizable

A domain succeeds on infinitely many programs
Any combination of domains fails on infinitely many programs

In practice, the analyzer is precise on a whole class of programs
False alarm reduction requires per-program tuning of parameters
(available to end-users, unlike domain refinement)
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Abstract interpreters Classic and specialized interpreters

Specialized abstract interpreter
Reinvent the concrete semantics

We may also need to change the concrete semantics!

Reasons: the original concrete semantics

does not support some constructions
e.g., concurrency: Astrée  AstréeA

abstracts away platform details too much
arithmetic overflows: non-deterministic  modular
(⇒ more precise analysis)
ill-typed dereferences: program halt  bit-level type-punning
(⇒ more behaviors)

necessary when analyzing non-portable programs

is incomplete (hard limit on the precision of any abstraction)
(e.g., simple interference semantics)
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Abstract interpreters Classic and specialized interpreters

Specialized abstract interpreter
Reinvent the concrete semantics

Even though the concrete semantics has changed
the abstracts domains can be reused:

abstractions may still be sound
e.g., non-deterministic overflow  modular overflow
completed by new abstractions sound only in the refined semantics

thread semantics as sequential program semantics
slightly modified with interferences
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Abstract interpreters Classic and specialized interpreters

Abstract interpretation of sequential programs
Two approaches

Sequential program exemple
1 while random do

2 if x < y then
3 x ← x + 1

Equation solving

X1 = I
X2 = X1 ∪ J x ← x + 1 KX3 ∪ J x ≥ y KX2
X3 = J x < y KX2

Interpretation by induction

J while random do S KX def=
lfp λY.X ∪ J S KY

J if x < y then S KX def=
J S K(J x < y KX ) ∪ J x ≥ y KX

linear memory in program length
flexible solving strategy
flexible context sensitivity
easy to adapt to concurrency

linear memory in program depth
fixed iteration strategy
fixed context sensitivity
(follows the program structure)

for scalability on large programs, memory is a limiting factor
⇒ Astrée(A) uses an interpreter by induction
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Abstract interpreters Analyzing concurrent programs

Analyzing concurrent programs
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Abstract interpreters Analyzing concurrent programs

Multi-thread execution model

t1 t2
1a while random do 1b while random do

2a if x < y then 2b if y < 100 then
3a x ← x + 1 3b y ← y + [1, 3]

Execution model:

finite number of threads

the memory is shared (x ,y)

each thread has its own program counter

execution interleaves steps from threads t1 and t2
(assignments and tests are supposed atomic)

=⇒ we have the global invariant 0 ≤ x ≤ y ≤ 102
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Abstract interpreters Analyzing concurrent programs

Product-based analysis

t1 t2
1a while random do 1b while random do

2a if x < y then 2b if y < 100 then
3a x ← x + 1 3b y ← y + [1, 3]

Product of thread equations, interleaving of instructions:
X`,`′ ⊆ Z2, ` ∈ {1a, 2a, 3a}, `′ ∈ {1b, 2b, 3b}
X1a,1b = I
X2a,1b = X1a,1b ∪ J x ≥ y KX2a,1b ∪ J x ← x + 1 KX3a,1b
X3a,1b = J x < y KX2a,1b
X2a,2b = X1a,2b ∪ J x ≥ y KX2a,2b ∪ J x ← x + 1 KX3a,2b ∪

X2a,1b ∪ J y ≥ 100 KX2a,2b ∪ J y ← y + [1, 3] KX2a,3b
X3a,2b = J x < y KX2a,2b ∪ X3a,1b ∪ J y ≥ 100 KX3a,2b ∪ J y ← y + [1, 3] KX3a,3b
X2a,3b = X1a,3b ∪ J x ≥ y KX2a,3b ∪ J x ← x + 1 KX3a,3b ∪ J y < 100 KX2a,2b
X3a,3b = J x < y KX2a,3b ∪ J y < 100 KX3a,2b

limitations: large number of variables, large equations
no induction on the syntax possible
=⇒ impractical
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Abstract interpreters Analyzing concurrent programs

Separate sequential analyses

t1
1a while random do

2a if x < y then
3a x ← x + 1

t2
1b while random do

2b if y < 100 then
3b y ← y + [1, 3]

Our wish: analyze each thread separately
scale linearly in program size
reuse the interpreter by induction on each thread
unsound if we don’t take thread interferences into account

Poor’s man concurrent analysis:
consider each shared variable as volatile input
rely on the user to list shared variables
rely on the user to provide ranges on shared variables

=⇒ huge human cost, drop in analysis confidence
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Abstract interpreters Analyzing concurrent programs

Inferring simple interferences

t1
1a while random do

2a if x < y then
3a x ← x + 1

t2
1b while random do

2b if y < 100 then
3b y ← y + [1, 3]

Principle: [Miné 2010, Carré & Hymans 2009]

analyze each thread in isolation
but also gather interferences
(abstraction of) the values stored into each variable by each thread

re-analyze the threads taking interferences into account
(variable read returns the last value written, or an interference)
gather new sets of interferences

iterate until stabilization
=⇒ one more level of fixpoint iteration
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Abstract interpreters Analyzing concurrent programs

Inferring simple interferences

t1
1a while random do

2a if x < y then
3a x ← x + 1

t2
1b while random do

2b if y < 100 then
3b y ← y + [1, 3]

Analysis of t1 in isolation

(1a): x = y = 0
(2a): x = y = 0
(3a):⊥

X1a = I
X2a = X1a ∪ J x ← x + 1 KX3a ∪ J x ≥ y KX2a
X3a = J x < y KX2a
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Abstract interpreters Analyzing concurrent programs

Inferring simple interferences

t1
1a while random do

2a if x < y then
3a x ← x + 1

t2
1b while random do

2b if y < 100 then
3b y ← y + [1, 3]

Analysis of t2 in isolation

(1b): x = y = 0
(2b): x = 0, y ∈ [0, 102]
(3b): x = 0, y ∈ [0, 99]

X1b = I
X2b = X1b ∪ J y ← y + [1, 3] KX3b ∪ J y ≥ 100 KX2b
X3b = J y < 100 KX2b

output interferences: y ← [1, 102]
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Abstract interpreters Analyzing concurrent programs

Inferring simple interferences

t1
1a while random do

2a if x < y then
3a x ← x + 1

t2
1b while random do

2b if y < 100 then
3b y ← y + [1, 3]

Re-analysis of t1 with interferences from t2

input interferences: y ← [1, 102]
(1a): x = y = 0
(2a): x ∈ [0, 102], y = 0
(3a): x ∈ [0, 102], y = 0

X1a = I
X2a = X1a ∪ J x ← x + 1 KX3a ∪ J x ≥ (y | [1, 102]) KX2a
X3a = J x < (y | [1, 102]) KX2a

output interferences: x ← [1, 102]

subsequent re-analyses are identical (fixpoint reached)
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Abstract interpreters Analyzing concurrent programs

Inferring simple interferences

t1
1a while random do

2a if x < y then
3a x ← x + 1

t2
1b while random do

2b if y < 100 then
3b y ← y + [1, 3]

Derived abstract analysis:
similar to a sequential program analysis, but iterated
(can be parameterized by arbitrary abstract domains)

efficient (few reanalyses are required in practice)

interferences are non-relational and flow-insensitive
(limit inherited from the concrete semantics)

Limitation:
we get x , y ∈ [0, 102]; we don’t get that x ≤ y
simplistic view of thread interferences (volatile variables)
based on an incomplete concrete semantics!
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Abstract interpreters Analyzing concurrent programs

Rely–guarantee reasoning

checking t1

t1 t2

1a while random do

x unchanged

2a if x < y then

y incremented

3a x ← x + 1

0 ≤ y ≤ 102

(1a) : x = y = 0
(2a) : x , y ∈ [0, 102], x ≤ y
(3a) : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

t1 t2

y unchanged

1b while random do

0 ≤ x ≤ y

2b if y < 100 then
3b y ← y + [1, 3]

(1b) : x = y = 0
(2b) : x , y ∈ [0, 102], x ≤ y
(3b) : x , y ∈ [0, 99], x ≤ y

Rely–guarantee: proof method introduced by Jones in 1981
generalized Hoare logics (by structural induction ⇒ thread-modular)

requires thread-local invariant assertions
requires guarantees on transitions generated by other threads
checks each thread against an abstraction of the other threads
allows proving that x ≤ y holds!
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Abstract interpreters Analyzing concurrent programs

Rely–guarantee reasoning

checking t1

t1 t2

1a while random do x unchanged
2a if x < y then y incremented

3a x ← x + 1 0 ≤ y ≤ 102

(1a) : x = y = 0
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Abstract interpreters Analyzing concurrent programs

Rely–guarantee reasoning

checking t1

t1 t2

1a while random do x unchanged
2a if x < y then y incremented

3a x ← x + 1 0 ≤ y ≤ 102

(1a) : x = y = 0
(2a) : x , y ∈ [0, 102], x ≤ y
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checking t2

t1 t2

y unchanged 1b while random do
0 ≤ x ≤ y 2b if y < 100 then

3b y ← y + [1, 3]

(1b) : x = y = 0
(2b) : x , y ∈ [0, 102], x ≤ y
(3b) : x , y ∈ [0, 99], x ≤ y

Rely–guarantee: proof method introduced by Jones in 1981
generalized Hoare logics (by structural induction ⇒ thread-modular)

requires thread-local invariant assertions
requires guarantees on transitions generated by other threads
checks each thread against an abstraction of the other threads
allows proving that x ≤ y holds!

Note: we look for a static analysis, not a proof method
=⇒ infer automatically invariants and guarantees

Idea: propose a constructive version of rely–guarantee [Mine 2014]
complete concrete semantics
expressed using fixpoints
amenable to abstraction [Cousot Cousot 1984]
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Rely–guarantee in abstract interpretation form

Rely–guarantee in abstract interpretation form
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Thread-modular concrete fixpoint semantics
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Non-modular concrete semantics

a

a

b

a

b

bb

Concrete trace semantics: F

threads: T def= {a, b, . . .}

states: Σ def= C ×M = {•, •, . . .}

control state: C def= T → L (maps threads to locations)
memory state: M def= V → V (maps variables to values)

transition relation: τ ⊆ Σ× T × Σ: σ a→τ σ′

partial finite trace semantics in fixpoint form:
F def= lfp F where
F def= λX . I ∪ {σ0

a1→ · · ·σi
ai+1→ σi+1 | σ0

a1→ · · ·σi ∈ X ∧ σi
ai+1→ τ σi+1 }
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Non-modular concrete semantics

a

a

b

a

b

bb

Reachable states: R (concrete semantics of interest)

Extract the states reached during execution

R = αreach(F) ⊆ Σ where
αreach(T ) def= {σ | ∃σ0

a1→ · · ·σn ∈ T : ∃i ≤ n : σ = σi }
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Modularity: main idea

bThread

x = 0

while x<y

  x++;

/* bla bla */

a b b a

Main idea: separate execution steps
from the current thread a

found by analysis by induction on the syntax of a

from other threads b
given as parameter in the analysis of a
inferred during the analysis of b
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Trace decomposition

a

a

a

b

a

b

bb

Reachable states projected on thread t: R`(t)

attached to thread control point in L, not control state in T → L
remember other thread’s control point as “auxiliary variables”
(required for completeness)

R`(t) def= πt(R) ⊆ L× (V ∪ { pct′ | t 6= t′ ∈ T })→ V

where πt(R) def= { 〈L(t), ρ [∀t ′ 6= t : pct′ 7→ L(t ′)]〉 | 〈L, ρ〉 ∈ R }
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Trace decomposition

a

a

a

b

a

b

bb

Interferences generated by t: I(t) (' guarantees on transitions)

Extract the transitions with action t observed in F
(subset of the transition system, containing only transitions actually used in reachability)

I(t) def= αitf (F)(t)
where αitf (X )(t) def= { 〈σi , σi+1〉 | ∃σ0

a1→ σ1 · · ·
an→ σn ∈ X : ai+1 = t }
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Thread-modular concrete semantics

bThread

x = 0

while x<y

  x++;

/* bla bla */

a b b a

Principle: express R`(t) and I(t) directly, without computing F

States: R`
Interleave:

transitions from the current thread t
transitions from interferences I by other threads

R`(t) = lfp Rt (I), where

Rt (Y )(X) def= πt (I) ∪ {πt (σ′) | ∃πt (σ) ∈ X : σ t→τ σ
′ } ∪

{πt (σ′) | ∃πt (σ) ∈ X : ∃t′ 6= t : 〈σ, σ′〉 ∈ Y (t′) }

=⇒ similar to reachability for a sequential program, up to I
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Thread-modular concrete semantics

a

a b b a

x = 0

while x<y

  x++;

/* bla bla */

Thread

Principle: express R`(t) and I(t) directly, without computing F

Interferences: I

Collect transitions from a thread t and reachable states R:
I(t) = B(R`)(t), where
B(Z)(t) def= { 〈σ, σ′〉 | πt (σ) ∈ Z(t) ∧ σ t→τ σ

′ }
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Rely–guarantee in abstract interpretation form Thread-modular concrete fixpoint semantics

Thread-modular concrete semantics

a

a b b a

x = 0

while x<y

  x++;

/* bla bla */

Thread

Principle: express R`(t) and I(t) directly, without computing F

Recursive definition:
R`(t) = lfp Rt (I)
I(t) = B(R`)(t)

=⇒ express the most precise solution as nested fixpoints:

R` = lfpλZ . λt. lfp Rt (B(Z))

=⇒ iterate analyses with interference

Completeness: ∀t : R`(t) ' R (πt is bijective thanks to auxiliary variables)
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Rely–guarantee in abstract interpretation form Thread-modular abstractions

Thread-modular abstractions
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Rely–guarantee in abstract interpretation form Thread-modular abstractions

Retrieving the simple interference-based analysis

Flow-insensitive abstraction:
reduce as much control information as possible
but keep flow-sensitivity on each thread’s control location

State abstraction: remove auxiliary variables
αf

R(X ) def= { 〈`, ρ|V 〉 | 〈`, ρ〉 ∈ X }

Interference abstraction: remove all control information
αf

I(Y ) def= { 〈ρ, ρ′〉 | ∃L, L′ ∈ C : 〈〈L, ρ〉, 〈L′, ρ′〉〉 ∈ Y }

Note: we lose completeness
we cannot prove that x is bounded in x ← x + 1 || x ← x + 1
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Rely–guarantee in abstract interpretation form Thread-modular abstractions

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

forget the relations between variables
forget the relations between values before and after transitions
(input-output relationship)

only remember which variables are modified
and their new value:

αc
I(Y ) def= λV . { x ∈ V | ∃〈ρ, ρ′〉 ∈ Y : ρ(V ) 6= x ∧ ρ′(V ) = x }

no modification on the state
(the analysis of each thread can still be relational)

=⇒ we get back our simple interference analysis!

Finally, use a numeric abstract domain α : P(V → V)→ D]
(for interferences, V → P(V) is abstracted as V → D])
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Rely–guarantee in abstract interpretation form Thread-modular abstractions

From traces to thread-modular analyses

abstract states
(T × L)→ D]

abstract interferences
T → D]

static analyzer

non-relational interferences

T → P(M)

α
OO

projected states

(T × L)→ P(M)

α

OO

flow-insensitive interferences

T → P(M×M)

αc
I

OO

rely-guarantee
(without aux. variables)

projected states

R` :
∏

t∈T
{t} → P(Σt )

αf
R

OO

interferences

A : T → P(Σ× Σ)

αf
I

OO

rely-guarantee
(with aux. variables)

πt
OO

αitf
OO

interleaved execution trace prefixes test
F ∈ P(Σ∗)
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Rely–guarantee in abstract interpretation form Thread-modular abstractions

Compare with sequential analyses

abstract states
L → D] static analyzer

states

R ∈ P(Σ)

α

OO

reachability

execution trace prefixes

F ∈ P(Σ∗)

αreach

OO

test
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Rely–guarantee in abstract interpretation form Thread-modular abstractions

Beyond simple interferences

Academic experiment (internship of Raphaël Monat, 2015)

fully-relational flow-insensitive interferences
academic prototype, no concern for scalability

Industry-targeted experiments (AstréeA, 2011–)

AstréeA was initially based on simple interferences
(flow-insensitive, non-relational)

now specialize AstréeA with partially relational interferences
support for locks and priorities
=⇒ reduce false alarms while keeping scalability
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Fully relational interferences
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Rely–guarantee in abstract interpretation form Fully relational interferences

Academic experiment
Fully relational interference abstraction:

αf
I(Y ) def= { 〈ρ, ρ′〉 | ∃L, L′ ∈ C : 〈〈L, ρ〉, 〈L′, ρ′〉〉 ∈ Y }
αf
I(Y ) ∈M×M: relation between states

=⇒ can be abstracted in a numeric abstract domain over V2

(e.g., polyhedra)

e.g.: { (x , x + 1) | x ∈ [0, 10] }
is represented as x ′ = x + 1 ∧ x ∈ [0, 10]

Abstract interpreter:
represent abstract states as polyhedra
propagate abstract states by induction on thread syntax
maintain interferences in a thread-wide polyhedron X ](t)
each assignment in t enriches X ](t) with new interferences
apply (∪]t′ 6=t X ](t ′))∗ after each instruction of t
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Rely–guarantee in abstract interpretation form Fully relational interferences

Example analysis

t1
while z < 10000

z = z + 1
if y < c then y = y + 1

done

t2
while z < 10000

z = z + 1
if x < y then x = x + 1

done

prototype “batman” [Monat 2015] in OCaml
supporting a small imperative language

abstractions based on Apron (polyhedra and octagons)

interference operations simulated with state operations on V2

able to infer x ≤ y

experimental comparison with ConcurInterproc
(non thread modular, also able to infer x ≤ y)
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Rely–guarantee in abstract interpretation form Fully relational interferences

Scalability in threads

n copies of each thread (with varying value for c)

fixed number of variables
=⇒ much better scalability than non-modular methods!
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Rely–guarantee in abstract interpretation form Fully relational interferences

Scalability in variables

n copies of each thread
n copies of each variable

=⇒ scalability issues, packing techniques needed (expected)
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Partilly relational interferences in AstréeA
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Mutual exclusion locks

t1

t2

lock

lock unlock

unlock

WR R R

W W W

Mutexes:

ensure mutual exclusion
at each time, each mutex can be locked by a single thread

enforce memory consistency and atomicity

=⇒ we need to discard spurious interferences, to improve the precision

We assume a fixed, finite number of mutexes
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Mutual exclusion locks

t1

t2

lock

lock unlock

unlock

WR R R

W W W

Data-race interferences:

across read / write not protected by a mutex

SAS’15 – 11 Sept. 2015 Abstract Interpretation of Concurrent Software Antoine Miné p. 40 / 64



Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Mutual exclusion locks

t1

t2

lock

lock unlock

unlock

WR R R

W W W

Data-race interferences:

across read / write not protected by a mutex

Well-synchronized interferences:

last write before an unlock in t1
influence reads between lock and first write in t2

We partition interferences by the set of mutexes held.
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Example

abstract consumer/producer

N consumers N producers
while random do while random do

lock(m) lock(m);
if x > 0 then x ← x − 1 endif; x ← x + 1;

if x > 100 then x ← 100 endif;
unlock(m) unlock(m)

Assuming we have several (N) producers and consumers:

no data-race interference (proof of the absence of data-race)

well-synchronized interferences:
consumer : x ← [0, 99]
producer : x ← [1, 100]

=⇒ we get that x ∈ [0, 100]

(without locks, if N > 1, our concrete semantics cannot bound x !)
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Locks and priorities

priority-based critical sections

high thread low thread
L← islocked(m); lock(m);
if L = 0 then Z ← Y ;

Y ← Y + 1; Y ← 0;
yeild unlock(m)

Real-time scheduling
only the highest priority unblocked thread can run
lock and yeild may block
yeilding threads wake up non-deterministically
(preempting lower-priority threads)
explicit synchronisation enforces memory consistency
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Locks and priorities

priority-based critical sections

high thread low thread
L← islocked(m); lock(m);
if L = 0 then Z ← Y ;

Y ← Y + 1; Y ← 0;
yeild unlock(m)

Partition interferences and environments wrt. scheduling state

partition wrt. mutexes tested with islocked
X ← islocked(m) creates two partitions

P0 where X = 0 and m is free
P1 where X = 1 and m is locked

P0 handled as if m where locked
blocking primitives merge P0 and P1 (lock, yeild)
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Weakly relational interferences

Clock thread

while Clock < 106 do
Clock ← Clock + 1;
· · ·

done

Accumulator thread

while random do
Prec ← Clock;
· · ·
delta← Clock − Prec;
if random then x ← x + delta endif;
. . .

done

Clock is a global, increasing clock
x accumulates periods of time
no overflow on Clock − Prec nor x ← x + delta

To prove this we need:
relational abstractions of interferences
(keep input-output relationships)

hypotheses on memory consistency
(e.g., partial store ordering)
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Monotonicity abstraction
Abstraction:
map variables to 1 monotonic or > don’t know

αmon
I (Y ) def= λV . if ∀〈ρ, ρ′〉 ∈ Y : ρ(V ) ≤ ρ′(V ) then 1 else >

keep some input-output relationships
forgets all relations between variables
flow-insensitive

Inference and use

gather:
I]

mon(t)(V ) =1⇐⇒
all assignments to V in t have the form V ← V + e, with e ≥ 0
use: combined with non-relational interferences
if ∀t : I]

mon(t)(V ) =1
then any test with non-relational interference J X ≤ (V | [a, b]) K can
be strengthened into J X ≤ V K
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Relational invariant interferences
Abstraction: keep relations maintained by interferences

remove control state in interferences (αf
I )

keep mutex state M (set of mutexes held)

forget input-output relationships
keep relationships between variables

αinv
I (Y ) def= { 〈M, ρ〉 | ∃ρ′ : 〈〈M, ρ〉, 〈M, ρ′〉〉 ∈ Y ∨ 〈〈M, ρ′〉, 〈M, ρ〉〉 ∈ Y }

〈M, ρ〉 ∈ αinv
I (Y ) =⇒ 〈M, ρ〉 ∈ αinv

I (Y ) after any sequence of interferences from Y

Lock invariant:

{ ρ | ∃t ∈ T ,M : 〈M, ρ〉 ∈ αinv
I (I(t)), m /∈ M }

property maintained outside code protected by m
possibly broken while m is locked
restored before unlocking m
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Relational lock invariants

t1

t2

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs
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Relational lock invariants

t1

t2

lock unlock

lock unlock

non−rel

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Relational lock invariants

t1

t2

rel

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Weakly relational interference example

analyzing t1

t1 t2

while random do x unchanged
lock(m); y incremented
if x < y then 0 ≤ y ≤ 102

x ← x + 1;
unlock(m)

analyzing t2

t1 t2

y unchanged while random do
0 ≤ x , x ≤ y lock(m);

if y < 100 then
y ← y + [1, 3];

unlock(m)

Using all three interference abstractions:
non-relational interferences (0 ≤ y ≤ 102, 0 ≤ x)

lock invariants, with the octagon domain (x ≤ y)

monotonic interferences (y monotonic)

we can prove automatically that x ≤ y holds
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Rely–guarantee in abstract interpretation form Partilly relational interferences in AstréeA

Subsequence interference

t1 : clock in H
while random do

if H < 10, 000 then
H ← H + 1

t2 : sample H into C
while random do

C ← H

t3 : accumulate elapsed time in T
while random do

if random then T ← 0
else T ← T + (C − L)
L← C

Problem: we wish to prove that T ≤ L ≤ C ≤ H
it is sufficient to prove the monotony of H, C , and L
but monotony is not transitive
X is only assigned monotonic variables 6=⇒ X is monotonic
=⇒ we infer an additional property implying monotony

Abstraction: subsequence
I]sub(t)(V ) = {W ∈ V | V ’s values are a subsequence of W ’s values }

αsub
R (X)(V ) def= {W | ∀〈〈`0, ρ0〉, . . . , 〈`n, ρn〉〉 ∈ X : ∃i0, . . . , in :

∀k : ik ≤ k ∧ ik ≤ ik+1 ∧ ∀j : ρj (V ) = ρij (W ) }
based on a trace version of the modular semantics
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AstréeA

AstréeA
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AstréeA

Sources for Astrée(A)’s concrete semantics

Concrete semantics: defined through
C99 norm (portable programs)

IEEE 754-1985 norm (floating-point arithmetic)

architecture parameters (sizeof, endianess, struct, etc.)

compiler and linker parameters (initialization, etc.)

Properties of interest: absence of run-time error
no integer nor float numeric overflow
no invalid arithmetic operation (/0, << 33)

no invalid memory access (arrays [], pointers *)

respect the constraints put by the programmer (assert)

i.e., reachability of bad memory states
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AstréeA

Astrée(A)’s targets

Analyzed programs: embedded critical C codes
no dynamic memory allocation
no recursivity

Astrée:
no concurrency
tuned for synchronous control/command software
(numeric & boolean; no string, list, etc.)
but sound on all accepted programs

AstréeA:
supports shared-memory concurrency (statically allocated threads)

supports operating systems (through externally provided stub models)

on-going support for data-structures
(strings, arrays; static allocation but dynamic usage)
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AstréeA

A few abstract domains used in Astrée(A)

octagons congruences boolean decision trees
±X ± Y ≤ c X ≡ a [b]
[Miné 2006] [Granger 1989] [Mauborgne]

ellipsoids exponentials trace partitions
digital filters X ≤ (1 + α)βt

[Feret 2005] [Feret 2005] [Mauborgne Rival 2005]

relational domains are often required to find inductive invariants
for scalability, they are limited to small variable packs, selected by syntactic heuristics
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AstréeA

Astrée’s abstract interpreter layers

↓
syntax iterator

↓
trace partitioning domain

l
memory domain

l
pointer domain

l
(reduced product of) numerical abstract domains

l l l l
...

intervals octagons decision trees filters . . .
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AstréeA

Astrée’s abstract interpreter layers

↓ general C code
syntax iterator

↓ side-effect-free C assignments & tests
trace partitioning domain

l
memory domain

l scalar assignments & tests
pointer domain

l numeric assignments & tests
(reduced product of) numerical abstract domains

l l l l
...

intervals octagons decision trees filters . . .
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AstréeA

Astrée’s abstract interpreter layers

↓ for (i=0;...) a[i] = *p;

syntax iterator
↓ a[i] = *p

trace partitioning domain
l a[0] = *p, a[1] = *p, ...

memory domain
l a@0 = x, a@4 = x

pointer domain
l a@0 = x, a@4 = x

(reduced product of) numerical abstract domains

l l l l
... a@0 = x, a@4 = x

intervals octagons decision trees filters . . .
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AstréeA

AstréeA’s abstract interpreter layers

thread iterator
↓

syntax iterator
↓

trace partitioning domain
↓

lock partitioning domain
l

memory domain
l ↑

interference domain
...

l ↓
pointer domain

l
(reduced product of) numerical abstract domains

l l l l
...

intervals octagons decision trees filters . . .
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AstréeA

Main case study
Specialization process:

choose one representative target industrial application
refine the domains until zero (or few) alarms
extend to other targets

performed in an academic settings
(requires modifying the analyzer)

Core target application:
embedded avionic code (DAL C)

2.1 Mloc (2 Mloc generated)

15 threads, shared memory, locks
preemptive real-time scheduling on a single processor
reactive code + network code + lists, strings, pointers
many variables, large arrays, many loops, shallow call graph
no dynamic memory allocation, no recursivity
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AstréeA

Analysis context

Concrete execution context:

Target application, in C Other applications

ARINC 653 operating system, in C+asm

Hardware

The target application:
runs concurrently with other applications (memory separation)

interacts dynamically with an ARINC 653 operating system
(thread control operations, mutex lock and unlock, communication services)

interacts with other applications through the OS
creates system objects only during an initialization phase
(the set of objects is inferred by the analysis)
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AstréeA

Analysis context

Abstract analysis context:

Target application, in C

ARINC 653 model, in C + built-ins

The target application is enriched with a hand-written model of the OS
5.2 Kloc of C + low-level AstréeA built-ins
stub and simulate all OS system calls
manage (fat) OS objects, mapped to (thin) AstréeA objects
(e.g., AstréeA’s locks are simple integers, ARINC 653’s locks have a string name)

=⇒ analyze stand-alone “C” programs, with no undefined symbol
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AstréeA

Example stub
void WAIT SEMAPHORE(

SEMAPHORE ID TYPE SEMAPHORE ID, SYSTEM TIME TYPE TIMEOUT,
RETURN CODE TYPE * RETURN CODE)

{
*RETURN CODE = NO ERROR;
if (SEMAPHORE ID < 0 || SEMAPHORE ID >= NB SEMAPHORE) {

ASTREE error("invalid semaphore");
*RETURN CODE = INVALID PARAM;

}
else if (TIMEOUT > 0) {

if (TIMEOUT == INFINITE SYSTEM TIME VALUE || ASTREE rand())
ASTREE lock mutex(SEMAPHORE ID);

}
else {

ASTREE yield();
*RETURN CODE = TIMED OUT;

}
}
else {

if ( ASTREE rand()) *RETURN CODE = NOT AVAILABLE;
else ASTREE lock mutex(SEMAPHORE ID);

}
}
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AstréeA

Results
Precision: achieved by specialization

2010: 12, 257 alarms
2015: 1, 195 alarms (60% on hand-written code)

99.94% selectivity (% of lines without alarm)

Efficiency:
on an intel i7 2.90 GHz workstation (1 core used)

computation time: 24h
analysis iterations: 6 (no widening needed on interferences)

27 GB RAM

Achieved through:
well-synchronized interferences with lock partitioning
relational interference domains
additional state abstract domains
(offset domains, bit-level float manipulation, memory domains)

limiting the scope of relational domains (variable packing)
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AstréeA

Industrial case studies
Additional case studies performed by industrials
study headed by David Delmas (Airbus)
on DAL C & DAL E avionics software

enrich ARINC stubs with newly used functions
design a full set of POSIX threads stubs
analysis precision tuning through end-user directives
no modification of the analyzer

size OS stub selectivity time memory
1.9 M ARINC 2.4 K 99.56% 154 h 18 GB
2.2 M POSIX 2.3 K 99.52% 160 h 23 GB
31.8 K POSIX 2.2 K 99.28% 50 mn 0.6 GB
33.1 K POSIX 1.2 K 97.18% 35 h 2.5 GB

selectivity only slightly worse than for the main case study
=⇒ towards a cost-effective industrial use of AstréeA
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Conclusion

Conclusion
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Conclusion

Summary

We proposed a static analysis framework for concurrent programs:

sound for all interleavings

thread-modular
scalable, able to reuse existing analyzers

parameterized by abstract domains
able to reuse existing domains

constructed by abstraction of a complete method
enable refinement to arbitrary precision

generalized previous simple interference analysis

defined novel relational interference domains

presented encouraging experimental results
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Conclusion

Future challenges: towards zero alarm

Precision target to be usable in avionics certification:

99.80% selectivity on hand-written code
(currently: 95.97% to 99.2%)

99.99% selectivity on automatically generated code
(currently: 99.78% to 99.98%)

Planned improvements:

specialized relational interference domains
memory domains (segmented array domain, specialization to strings)

automate precision-control heuristics

On-going industrialization towards AbsInt:
merging with commercial Astrée
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Conclusion

Future challenges: weak memory
The interleaving semantics (sequential consistency) is not realistic
Actual languages and CPU obey relaxed memory models due to

CPU-level optimizations (memory buffers, instruction reordering)

compiler-level optimizations (allowed by language specifications)

=⇒ an analysis sound only for sequential consistency
may not be sound for the actual memory model!

(example: y ← 1; if x = 0 then · · · || x ← 1; if y = 0 then · · · )

Result: The flow-insensitive non-relational analysis is sound
wrt. a large set of weak memory models

Rationale: flow-insensitive non-relational interferences are insensitive
to the reordering of reads and writes [Miné 2011, Alglave et al. 2011]

Challenges:
flow-sensitivity and relationality despite weak memory
specialization to realistic memory models
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Conclusion

Future challenges: inter-thread flow-sensitivity

full
preemption

ARINC

tasks + interrupts
OSEK

sequentialisable

preemption + process control

Preemptive vs. sequential:
AstréeA started with a fully preemptive semantics
(allow all interleavings)

refined to take into account locks and priorities
(mutual exclusion)

Future work:
take into account inter-thread flow more precisely
(almost sequential initialization, process and scheduling control)

more precise support for OSEK/AUTOSAR
(low preemption scheduling, explicit task switching)

full preemption is a sound (but coarse) abstraction of all other scheduling
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