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Introduction

 Great progress in sound modular
verification of source code
 … but (except for some rare cases) whole-system 

verification is not yet reachable

 As a consequence, modularly verified code needs to run 
side-by-side with unverified (= possibly buggy/malicious) 
code at run time.

 Objective:
 Maintaining soundness of modular verification after 

compilation
Our focus for this talk:

• C-like language

• Security properties expressible in separation logic

• Attacker model = attacker can compromise the machine code of

the non-verified modules of the system



Structure of the talk
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Consider a program consisting of a number of modules, and their dependencies.

C Java ML

In Header file (Roughly) Interfaces Signature

Mn C file (Roughly) Classes Structure / 

Functor
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Suppose you have proven a (security) property of module M1 by modular reasoning.

E.g.:

• Some invariant holds on the module’s state

• The integrity of some data in the module is protected from other modules

• (Some data in the module remains confidential towards other modules)
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M1 is compiled to a machine code module M1’ running in a process on top 

of an OS/HW platform.

Other compiled modules and a runtime library (RL) run in the same process 

and share memory with M1’.

How can we secure interactions between M1’ and its context such that verified

properties can not be invalidated?
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Low-level protection

 Typed assembly language
 Morrisett et al. From System F to typed assembly 

language, ACM TOPLAS (1999)

 Hardware supported low-level security 
monitors
 Intel SGX

 Sancus machine
• Noorman et al. , Sancus: Low-cost trustworthy extensible 

networked devices with a zero-software trusted computing base, 
Usenix Security 2013 

 PUMP machine
• Dhawan et al. Architectural Support for Software-Defined 

Metadata Processing, ASPLOS 2015



A simplified SGX model 

 Standard Intel x86 style platform
 Processor with

• Program Counter

• Registers and a Stack Pointer

• Status (flags) registers

 32-bit memory space mapping 32-bit addresses to 
32-bit words

 Extended with a program-counter 
based memory access control model
 “SGX enclaves” or “protected modules”

 (Note that SGX has many more 
features that we do not model)
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Low-level protection mechanism
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Preserving validity of assertions

 Consider a sequential subset of C without 
dynamic memory allocation

static int value = 0; 

int get() { 

return value; 

} 

void inc() { 

int oldval = value; 

value += 1; 

int newval = value; 

observer(); 

assert(newval == oldval + 1); 

return; 

}

void observer() { 

// code of observer omitted 

}

M1.c M2.c



Preserving validity of assertions

 Consider a sequential subset of C without 
dynamic memory allocation

static int value = 0; 

int get() { 

return value; 

} 

void inc() { 

int oldval = value; 

value += 1; 

int newval = value; 

observer(); 

assert(newval == oldval + 1); 

return; 

}

void observer() { 

// code of observer omitted 

}

M1.c M2.c

This assertion is valid according to the

source code semantics …

But fails if an attacker can mess with

the machine code of M2.c after 

compilation.



Standard compilation

Memory
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Call stack:

AR observer()

AR inc()

static int value = 0; 

int get() { 

return value; 

} 

void inc() { 

int oldval = value; 

value += 1; 

int newval = value; 

observer(); 

assert(newval == oldval + 1); 

return; 

}

void observer() { 

// code of observer omitted 

}
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Compilation to simplified SGX

 C modules are compiled to SGX enclaves
 Space for static (private) vars in the data section

 Machine code for all functions in the text section

 Entry points for each publicly accessible function

 Calling conventions and call stack:
 Pass parameters through processor registers

 Call stack: activation record of a function call stored in 
the data section of the enclave containing the function

 A specific return entry point supports returning from a 
callback



Secure compilation
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AR observer()

static int value = 0; 

int get() { 

return value; 

} 

void inc() { 

int oldval = value; 

value += 1; 

int newval = value; 

observer(); 

assert(newval == oldval + 1); 

return; 

}

void observer() { 

// code of observer omitted 

}
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Secure compilation

 Many details to get right
 Depending on the source language features to support

• Function pointers, objects, classes, exceptions, …

 See the following papers:
 Agten et al. Secure compilation to modern processors, 

CSF 2012

 Patrignani et al. Secure compilation to protected module 
architectures, TOPLAS 2015

for formal proofs that this style of compilation can be 
made fully abstract
• i.e. machine code can only interact with a module as source 

code can



What about interface specs?
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We now know how to compile M1 to a hardened M1’ such that machine code 

contexts can only do what source code contexts can do.

But verification of properties of M1 might rely on specs of I2 and I3!

HENCE: we need to insert run time checks for these contracts.
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Checking interface contracts

 We will implement interface contract 
checking as a source-to-source program 
transformation

 The resulting “hardened” module can be 
verified in any source code context
 i.e. with empty interface contracts

 And hence will maintain any verified property 
after compilation to machine code with the 
secure (fully abstract) compiler just 
discussed
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Checking interface contracts
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Checking interface contracts
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Extending the interface checks
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 Before, interface checks were just assertion 
checks:

• On entering a function of the module

• On returning from an outcall

 Now, these assertions can be “spatial” 
assertions:
 Interface checks should also maintain the footprint of 

the module

 And check integrity of that footprint
• On entering a function of the module

• On returning from an outcall



Spatial assertions
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Spatial assertions
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On return from outcall:

Produce the footprint of 
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Spatial assertions
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Program 

transformation

Frame rule for ct

And check that the context

did not modify the contents 

of the footprint of the module



Main theorems
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For details, see:  Agten et al. Sound modular verification of C code 

executing in an unverified context, POPL 2015
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Implementation

 We have an end-to-end implementation
 Verifier = VeriFast [very mature]

 Program transformations for run time contract checking support a 
subset of C and VeriFasts program logic [prototype]

 Secure compiler is an LLVM based “pragmatic” implementation of a 
fully abstract compiler [initial prototype]

 Protected Module Architecture is either Sancus or Fides [stable 
prototypes], but should be Intel SGX soon

 Benchmarks show acceptable costs



Conclusions
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A property verified of M1 is true at run time, relying only on:

• Soundness of the verifier

• Correctness and security of the compiler (including the runtime checks

discussed in this talk)

• Correctness of the hardware (including the memory access control)

Compile

M2’

M3’

M4’

RL

OS

HW

…

M1’



Future Work

 Implementation and benchmarking on Intel 
SGX

 Handling concurrency
 VeriFast is sound for concurrent code

 But clearly, the current run time contract checks are not

 Preserving relational program properties
 For instance non-interference

 The current run time checks are only sound for safety 
properties

 Evaluating other low-level protection 
mechanisms

 …



Questions?

Thank you!
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