
Sound modular verification of

code running in an untrusted

binary code context

Frank Piessens, KU Leuven

WORKSHOP ON SECURITY FOR LOW-LEVEL CODE

SEPTEMBER 8, 2015, SAINT-MALO, FRANCE

Introduction

 Great progress in sound modular
verification of source code
 … but (except for some rare cases) whole-system

verification is not yet reachable

 As a consequence, modularly verified code needs to run
side-by-side with unverified (= possibly buggy/malicious)
code at run time.

 Objective:
 Maintaining soundness of modular verification after

compilation
Our focus for this talk:

• C-like language

• Security properties expressible in separation logic

• Attacker model = attacker can compromise the machine code of

the non-verified modules of the system

Structure of the talk

 Overview

 Low-level platform protection mechanisms

 Secure compilation of mini-C

 Handling C-style dynamic memory allocation

 Implementation

 Conclusions

Overview

M1

I1

M2

I2

M3

I3

M4

I4

Consider a program consisting of a number of modules, and their dependencies.

C Java ML

In Header file (Roughly) Interfaces Signature

Mn C file (Roughly) Classes Structure /

Functor

Overview

M1

I1

M2

I2

M3

I3

M4

I4

Suppose you have proven a (security) property of module M1 by modular reasoning.

E.g.:

• Some invariant holds on the module’s state

• The integrity of some data in the module is protected from other modules

• (Some data in the module remains confidential towards other modules)

Overview

M1

I1

M2

I2

M3

I3

M4

I4

M1 is compiled to a machine code module M1’ running in a process on top

of an OS/HW platform.

Other compiled modules and a runtime library (RL) run in the same process

and share memory with M1’.

How can we secure interactions between M1’ and its context such that verified

properties can not be invalidated?

Compile

M2’

M3’

M4’

RL

OS

HW

…

M1’

Structure of the talk

 Overview

 Low-level platform protection mechanisms

 Secure compilation of mini-C

 Handling C-style dynamic memory allocation

 Implementation

 Conclusions

Low-level protection

 Typed assembly language
 Morrisett et al. From System F to typed assembly

language, ACM TOPLAS (1999)

 Hardware supported low-level security
monitors
 Intel SGX

 Sancus machine
• Noorman et al. , Sancus: Low-cost trustworthy extensible

networked devices with a zero-software trusted computing base,
Usenix Security 2013

 PUMP machine
• Dhawan et al. Architectural Support for Software-Defined

Metadata Processing, ASPLOS 2015

A simplified SGX model

 Standard Intel x86 style platform
 Processor with

• Program Counter

• Registers and a Stack Pointer

• Status (flags) registers

 32-bit memory space mapping 32-bit addresses to
32-bit words

 Extended with a program-counter
based memory access control model
 “SGX enclaves” or “protected modules”

 (Note that SGX has many more
features that we do not model)

9

Low-level protection mechanism

10

Structure of the talk

 Overview

 Low-level platform protection mechanisms

 Secure compilation of mini-C

 Handling C-style dynamic memory allocation

 Implementation

 Conclusions

Preserving validity of assertions

 Consider a sequential subset of C without
dynamic memory allocation

static int value = 0;

int get() {

return value;

}

void inc() {

int oldval = value;

value += 1;

int newval = value;

observer();

assert(newval == oldval + 1);

return;

}

void observer() {

// code of observer omitted

}

M1.c M2.c

Preserving validity of assertions

 Consider a sequential subset of C without
dynamic memory allocation

static int value = 0;

int get() {

return value;

}

void inc() {

int oldval = value;

value += 1;

int newval = value;

observer();

assert(newval == oldval + 1);

return;

}

void observer() {

// code of observer omitted

}

M1.c M2.c

This assertion is valid according to the

source code semantics …

But fails if an attacker can mess with

the machine code of M2.c after

compilation.

Standard compilation

Memory

Machine code

for M1

Machine code

for M2

Call stack:

AR observer()

AR inc()

static int value = 0;

int get() {

return value;

}

void inc() {

int oldval = value;

value += 1;

int newval = value;

observer();

assert(newval == oldval + 1);

return;

}

void observer() {

// code of observer omitted

}

Static data

Return address

oldval

newval

Compilation to simplified SGX

 C modules are compiled to SGX enclaves
 Space for static (private) vars in the data section

 Machine code for all functions in the text section

 Entry points for each publicly accessible function

 Calling conventions and call stack:
 Pass parameters through processor registers

 Call stack: activation record of a function call stored in
the data section of the enclave containing the function

 A specific return entry point supports returning from a
callback

Secure compilation

Memory

Machine code

for M1

Machine code

for M2

AR observer()

static int value = 0;

int get() {

return value;

}

void inc() {

int oldval = value;

value += 1;

int newval = value;

observer();

assert(newval == oldval + 1);

return;

}

void observer() {

// code of observer omitted

}

Static data M1

Return address

oldval

newval

AR inc()

Static data M2

E
n
c
la

v
e
 fo

r M
2

E
n
c
la

v
e
 fo

r M
1

Secure compilation

 Many details to get right
 Depending on the source language features to support

• Function pointers, objects, classes, exceptions, …

 See the following papers:
 Agten et al. Secure compilation to modern processors,

CSF 2012

 Patrignani et al. Secure compilation to protected module
architectures, TOPLAS 2015

for formal proofs that this style of compilation can be
made fully abstract
• i.e. machine code can only interact with a module as source

code can

What about interface specs?

M1

I1

M2

I2

M3

I3

M4

I4

We now know how to compile M1 to a hardened M1’ such that machine code

contexts can only do what source code contexts can do.

But verification of properties of M1 might rely on specs of I2 and I3!

HENCE: we need to insert run time checks for these contracts.

Compile

M2’

M3’

M4’

RL

OS

HW

…

M1’

Checking interface contracts

 We will implement interface contract
checking as a source-to-source program
transformation

 The resulting “hardened” module can be
verified in any source code context
 i.e. with empty interface contracts

 And hence will maintain any verified property
after compilation to machine code with the
secure (fully abstract) compiler just
discussed

Checking interface contracts

20

Program

transformation

Checking interface contracts

21

Program

transformation

Alpha-rename the

body of the verified

functions

Checking interface contracts

22

Program

transformation

On entry, check

validity of the

precondition

Checking interface contracts

23

Program

transformation

On outcall, check

validity of the

postcondition

Structure of the talk

 Overview

 Low-level platform protection mechanisms

 Secure compilation of mini-C

 Handling C-style dynamic memory allocation

 Implementation

 Conclusions

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Example context + module

Context Module

Extending the interface checks

45

 Before, interface checks were just assertion
checks:

• On entering a function of the module

• On returning from an outcall

 Now, these assertions can be “spatial”
assertions:
 Interface checks should also maintain the footprint of

the module

 And check integrity of that footprint
• On entering a function of the module

• On returning from an outcall

Spatial assertions

46

Program

transformation

Spatial assertions

47

Program

transformation

On entry:

Produce the footprint of

the precondition

Spatial assertions

48

Program

transformation

On return:

Consume the footprint of

the postcondition

Spatial assertions

49

Program

transformation

On outcall:

Consume the footprint of

the precondition

Spatial assertions

50

Program

transformation

On return from outcall:

Produce the footprint of

the postcondition

Spatial assertions

51

Program

transformation

Frame rule for ct

And check that the context

did not modify the contents

of the footprint of the module

Main theorems

52

For details, see: Agten et al. Sound modular verification of C code

executing in an unverified context, POPL 2015

Structure of the talk

 Overview

 Low-level platform protection mechanisms

 Secure compilation of mini-C

 Handling C-style dynamic memory allocation

 Implementation

 Conclusions

Implementation

 We have an end-to-end implementation
 Verifier = VeriFast [very mature]

 Program transformations for run time contract checking support a
subset of C and VeriFasts program logic [prototype]

 Secure compiler is an LLVM based “pragmatic” implementation of a
fully abstract compiler [initial prototype]

 Protected Module Architecture is either Sancus or Fides [stable
prototypes], but should be Intel SGX soon

 Benchmarks show acceptable costs

Conclusions

M1

I1

M2

I2

M3

I3

M4

I4

A property verified of M1 is true at run time, relying only on:

• Soundness of the verifier

• Correctness and security of the compiler (including the runtime checks

discussed in this talk)

• Correctness of the hardware (including the memory access control)

Compile

M2’

M3’

M4’

RL

OS

HW

…

M1’

Future Work

 Implementation and benchmarking on Intel
SGX

 Handling concurrency
 VeriFast is sound for concurrent code

 But clearly, the current run time contract checks are not

 Preserving relational program properties
 For instance non-interference

 The current run time checks are only sound for safety
properties

 Evaluating other low-level protection
mechanisms

 …

Questions?

Thank you!

References

 P. Agten, B. Jacobs, F. Piessens, Sound modular verification of C code
executing in an unverified context, POPL 2015

 J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C.
Huygens, B. Preneel, I. Verbauwhede, F. Piessens, Sancus: Low-cost
trustworthy extensible networked devices with a zero-software trusted
computing base, USENIX Security 2013

 P. Agten, R. Strackx, B. Jacobs, F. Piessens, Secure compilation to modern
processors, CSF 2012

 M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, F. Piessens,
Secure compilation to Protected Module Architectures, TOPLAS 2015

 B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, F. Piessens,
VeriFast: A powerful, sound, predictable, fast verifier for C and Java, NASA
Formal Methods 2011

